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Abstract—Distributed computing infrastructures are com-
monly used through scientific gateways, but operating these
gateways requires important human intervention to handle oper-
ational incidents. This paper presents a self-healing process that
quantifies incident degrees of workflow activities from metrics
measuring long-tail effect, application efficiency, data transfer
issues, and site-specific problems. These metrics are simple
enough to be computed online and they make little assumptions
on the application or resource characteristics. Incidents are
classified in levels and associated to sets of healing actions that
are selected based on association rules modeling correlations
between incident levels. The healing process is parametrized on
real application traces acquired in production on the European
Grid Infrastructure. Implementation and experimental results
obtained in the Virtual Imaging Platform show that the proposed
method speeds up execution up to a factor of 4 and properly
detects unrecoverable errors.

I. INTRODUCTION

Distributed computing infrastructures (DCI) are becoming
daily instruments of scientific research, in particular through
scientific gateways [1] developed to allow scientists to trans-
parently run their analyses on large sets of computing re-
sources. While these platforms provide important amounts of
resources in an almost seamless way, their large scale and the
number of middleware systems involved lead to many errors
and faults. Easy-to-use interfaces provided by these gateways
exacerbate the need for properly solving operational incidents
encountered on DClIs since end users expect high reliability
and performance with no extra monitoring or parametrization
from their side. In practice, such services are often backed by
substantial support staff who monitors running experiments
by performing simple yet crucial actions such as rescheduling
tasks, restarting services, killing misbehaving experiments or
replicating data files to reliable storage facilities. Fair QoS can
then be delivered, yet with important human intervention.

For instance, the long-tail effect [2] is a common frustration
for users who have to wait for a long time to retrieve the last
few pieces of their computations. Operators may be able to
address it by rescheduling tasks that are considered late (e.g.
due to execution on a slow machine, low network throughput
or just loss of contact) but detection is very time consuming
and still rough.

Automating such operations is challenging for two reasons.
First, the problem is online by nature because no reliable user
activity prediction can be assumed, and new workloads may
arrive at any time. Therefore the considered metrics, decisions

and actions have to remain simple and to yield results while
the application is still executing. Second, it is non-clairvoyant
due to the lack of information about applications and resources
in production conditions. Computing resources are usually dy-
namically provisioned from heterogeneous clusters, clouds or
desktop grids without any reliable estimate of their availability
and characteristics. Models of application execution times
are hardly available either, in particular on heterogeneous
computing resources.

A scientific gateway is considered here as a platform where
users can process their own data with predefined applications
workflows. Workflows are compositions of activities defined
independently from the processed data and that only consist of
a program description. At runtime, activities receive data and
spawn invocations from their input parameter sets. Invocations
are assumed independent from each other (bag of tasks)
and executed on the DCI as single-core tasks which can be
resubmitted in case of failures. This model fits several existing
gateways such as e-bioinfra [3|], P-Grade [4], the Virtual
Imaging Platform [5] or Décrypthon [6]. We also consider that
files involved in workflow executions are accessed through
a single file catalog but storage is distributed. Files may be
replicated to improve availability and reduce load on servers.

The gateway may take decisions on file replication, resource
provisioning, and task scheduling on behalf of the user. Perfor-
mance optimization is a target but the main point is to ensure
that correctly-defined executions complete, that performance
is acceptable, and that misbehaving runs (e.g. failures coming
from user errors or unrecoverable infrastructure downtimes)
are quickly detected and stopped before they consume too
many resources.

Our ultimate goal is to reach a general model of such a
scientific gateway that could autonomously detect and handle
operational incidents. In this work, we propose a healing
process for workflow activities only. Activities are modeled as
Fuzzy Finite State Machines (FuSM) [7] where state degrees
of membership are determined by an external healing process.
Degrees of membership are computed from metrics assuming
that incidents have outlier performance, e.g. a site or a par-
ticular invocation behaves differently than the others. Based
on incident degrees, the healing process determines incident
levels from thresholds determined from platform history. A
specific set of actions is then selected from association rules
among incident levels.

Section [lI| presents related work. Our approach is described



in section (general healing process), section (metrics
used to quantify incident degrees) and section [V] (incident
levels and associated action sets). Experimental results are
presented in section [V in production conditions.

II. RELATED WORK

Managing systems with limited intervention of system ad-
ministrators is the goal of autonomic computing [8]. It has
been used to address various problems related to self-healing,
self-configuration, self-optimization, and self-protection of
distributed systems. For instance, provisioning of virtual ma-
chines is studied by Nguyen et al. [9] and an approach to
tackle service overload, queue starvation, “black hole” effect
and job failures is sketched by Collet et al. [10].

An autonomic manager consists of monitoring, analysis,
planning, execution and knowledge (so-called MAPE-K loop).
Generic software frameworks have been built to wrap legacy
applications in such loops with limited intrusiveness. For
instance, Broto et al. [11]] demonstrates the wrapping of DIET
grid services for autonomic deployment and configuration. We
consider here that the target gateway can be instrumented to
report appropriate events and perform actions.

Monitoring is broadly studied in distributed systems, both
at coarse (traces, archives) and fine time scales (active mon-
itoring, probing). Many workload archives are available. In
particular, the grid observatory [12] has been collecting traces
for a few years on several grids. However, as noted by losup &
Epema [13]], most existing traces remain at the task level and
lack information about workflows and activities. Application
patterns can be retrieved from logs (e.g. bag of tasks) but
precise information about workflow activities is bound to be
missing. Studies on task errors and their distributions are also
available [[14], [15]], but they do not consider operational issues
encountered by the gateways submitting these tasks. Besides,
active monitoring using tools such as Nagios [16] cannot be
the only monitoring source when substantial workloads are
involved. Therefore we rely on traces of the target gateway, as
detailed in section [Vl One issue in this case is to determine
the timespan where system behavior can be considered steady-
state. Although this issue was recently investigated [17], it
remains difficult to identify non-stationarities in an online
process and we adopt here a stationary model.

Analysis consists in computing metrics (a.k.a. utility func-
tions) from monitoring data to characterize the state of the
system. System state usually distinguishes two regimes: prop-
erly functioning and misfunctioning. Zhang et al. [[18] assume
that incidents lead to non stationarity of the workload statistics
and use the Page-Hinkely test to detect them. Stehle et al. [19]
present a method where the convex hull is used instead of
hyper-rectangles to classify system states. As described in
section [V} we use multiple threshold values for a given metric
to use more than two levels to characterize incidents.

Planning and actions considered in this work deal with
task scheduling and file replication. In these domains, most
approaches are clairvoyant, meaning that resource, task, error
rate and workload characteristics are precisely known [20],
[21]. Heuristics are designed by Casanova et al. [22] for the

case where only data transfer costs are known, on an offline
problem though. Camarasu-Pop et al. [23] propose a dynamic
load-balancing strategy proposed to remove the long-tail effect
on production heterogeneous systems, but it is limited to
Monte-Carlo simulations.

The general task scheduling problem is out of our scope.
We assume that a scheduler is already in place, and we only
aim at performing actions when it does not deliver proper
performance. In particular, we focus on site blacklisting and
on task replication to avoid long-tail effect. Task replication,
a.k.a. redundant requests is commonly used to address non-
clairvoyant problems [2], but it should be used sparingly
to avoid overloading the middleware and degrading fairness
among users [24]. In this work, task replication is considered
when activities are detected blocked or of low efficiency
according to the metric presented in section

Similarly, file replication strategies often assume clairvoy-
ance on the size of produced data, file access pattern and
infrastructure parameters [25]], [26]. In practice, production
systems mostly remain limited to manual replication strategies
though [27]].

III. GENERAL HEALING PROCESS

An activity is modeled as an FuSM with 13 states
shown on Fig. |1} The activity is initialized in Submitting
Invocations where all the tasks are generated and submit-
ted. Tasks consist of 4 successive phases: initialization, inputs
download, application execution and output upload. They are
all assumed independent, but with similar execution times (bag
of tasks). Running is a state where no particular issue is
detected; no action is taken and the activity is assumed to
behave normally. Completed (resp. Failed) is a terminal
state used when all the invocations are successfully completed
(resp. at least one invocation failed). These 4 states are crisp
(not fuzzy) and exclusive[ﬂ The 9 other states are fuzzy states
corresponding to detected incidents.

The healing process sets the degree of FuSM states from
incident detection metrics and invocation statuses. Then it de-
termines the actions to be performed to address the incidents.
If no action is required then the process waits until an event
occurs (task status change) or a timeout is reached.

Let I = {x;,4 = 1,...,n} be the set of possible in-
cidents (9 in this work) and n = (n1,...,m,) € [0,1]"
their degrees in the FuSM. Incident x; can occur at different
levels {z;;,j = 1,...,m;} delimited by threshold values
7, = {m;,j = 1,...,m;}. The level of incident i is
determined by j such that 7; ; < 1n; < 75 j41. A set of actions
a;(j) is available to address x; ;:

a; : [1,m] = p(A)

Jai(j) (1

where A is the set of possible actions taken by the healing
process and p(A) is the power set of A.

In addition to the incidents themselves, incident causes are
taken into account. Association rules [28] are used to identify

ITheir degree can only be 0 or 1 and if 1 then all the other states have a
degree of 0.
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relations between levels of different incidents. Association
rules to xzj are defined as R; ; = {r“’” = (zy, 1,,xiyj,p;f’]v)}
Rule r ;j means that when T happens then z;; also
happens with confidence p;"; € [0, 1]. The confidence of a rule
is an estimate of probablhty P(:z:7 i|Tu,v). Note that rfj € R
and p;” ) = 1. We also define R = Uiepinl, jelumi] Fig

Fig. @] presents the algorithm used at each iteration of the
healing process. Incident degrees are determined based on
metrics presented in section and incident levels j are
obtained from historical data as explained in section A
roulette wheel selection [29]] based on 7 is then performed
to select x; ; the incident level of interest at this iteration.
Roulette wheel selection assigns a proportion of the wheel
to each incident level according to their probability and a
random selection is performed based on a spin of the roulette
wheel. The probability of an incident z; to be selected is
p(x;) = i/ 22‘;1 n;. A potential cause z,, for incident
255 1s then selected from a roulette wheel selection on the
association rules r;’, where z, is at level v. Rule r“j" is
weighted 7, X p;’; “"in the roulette selection. Only first-order
causes are con51dered here but the approach could be extended
to include more recursion levels. Note that rfg participates in
this selection so that a first-order cause is not systematically
chosen. Finally, actions in a,(v) are performed.

Table [l|illustrates this mechanism on an example case where
only 3 incidents are considered.

IV. INCIDENT DEGREE

This section describes the metrics used to determine the
degree of the 9 considered incidents (step 02 on Fig. [2).

a) Activity Blocked: this incident happens when an invo-
cation is considered late compared to the others. It is responsi-
ble for many operational issues, leading to substantial speed-up
reductions. For instance, it occurs when one invocation of the

Input: invocation statuses and history of n
Output: set of actions a

01. wait for event or timeout

02. determine incident degrees 1 based on metrics

03. determine incident levels j such that 7; ; < n; < 7541

04. select incident x; by roulette wheel selection based on 7

05. select rule 7y, = (Ty,0, Tij, p;” g ) E R; ; by roulette
wheel selection based on 7, X ph j , where x,, is at level v

06. a= ay,(v)

07. perform actions in a

Fig. 2. One iteration of the healing process.
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Fig. 3. Detection of blocked activity.

activity requires more CPU cycles or when the invocation faces
longer waiting times, lost tasks or executes on resources with
poorer performance. This situation is detected online from the
number n(t) of completed invocations at time ¢ (see Fig. .
At time ¢, we compute the slope a(t) of the regression line
of {(t;,n(t;)),t; < t}. In case the iteration is triggered by
a timeout instead of an event, then (¢,n(t) + 1) is added to
the regression set. This is meant to ensure that long-running
invocations can be handled before they complete. We then
define the incident degree 7, from the contraction rate of the

Step 02 and 03: incident degrees and levels are determined:
x;: incident name | Degree n; | Level j

x1: activity blocked 0.8 2
z2o: low efficiency 0.4 1
xz3: input data unavailable 0.1 1

Step 04: x1 2 is selected with probability ﬁ.

. Lo 2,1 3,1 1,2 . .
Step 05: association rules 2> T2 and ryl5 are considered:

Rule Confidence

7T

7‘1’2. 2,1 — T1,2 0.8
3,1

1”1”%2 3,1 —> T12 0.2
1
Tilpt 1,2 — T1,2 1

2,1 0.8x0.4

T2 is chosen with probability 08X0430.2x0.1T08xT"

Step 06: actions in a2 (1) are performed.

TABLE I
EXAMPLE CASE.




linear regression slope:

a(t)
Gmax (t)

where amax(t) is maximal value of a(t) in [0,¢]. t = 0 is the
time when the activity is started, i.e., all the invocations are
initialized. Note that the maximum degree 7, = 1 is reached
when the activity is completely blocked (lim;—,, a(t) = 0).
On the other hand, 7, = 0 is reached when a(t) = amaz(t).
Invocations are assumed of identical lengths, which is common
for a workflow activity.

b) Low Efficiency: this happens when the time spent by
all the activity invocations in data transfers dominates CPU
time. It may be due to sites with poor network connectivity
or intrinsic to the application. The incident degree is defined
from the ratio between the cumulative CPU time C; consumed
at time ¢ by all completed invocations and the cumulative
execution time at time ¢ of all completed invocations:

Z?:(tf &

S (Ci+ D))
where D; is the time spent by invocation ¢ in data transfers.

¢) Input Data Unavailable: this happens when a file is
registered in the file catalog but the storage resource(s) is(are)
unavailable or unreachable. The incident degree 7;, in this
state is determined from the input transfer failure rate due to
data unavailability. Transfers of completed, failed, and running
invocations are considered.

d) Input Data does not Exist: this happens when an
incorrect data path was specified, the file was removed by
mistake or the file catalog is unavailable or unreachable.
Again, the incident degree ;. is directly determined by the
input transfer failure rate due to non-existent data. Transfers
of completed, failed, and running invocations are considered.

e) Site Misconfigured for Input Data: this incident hap-
pens when sites have utmost input data transfer failure rate.
The incident degree 7);s at time ¢ is measured as follows:

7¢k)) - median(¢17 ¢27 sy ¢k¢)

where ¢; denotes the input transfer failure ratio (including
both input data unavailable and input data does not exist) on
site ¢ at time ¢ and k is the number of white-listed sites used
by the activity at time ¢. The difference between the maximum
rate and the median ensures that the incident degree has high
values only when some sites are misconfigured. This metric
is correlated but not redundant with the two previous ones. If
some input data file is not available due to site-independent
issues with the storage system, then 7, will grow but 7 will
remain low because all sites fail identically. On the contrary,
;s may grow while 7, and 7;, remain low.

f) Output Data Unavailable: output data can also be
unavailable. Unavailability happens due to three main reasons:
the user did not specify the output path correctly, the applica-
tion did not produce the expected data, or the file catalog or
storage resource are unavailable or unreachable. The incident
degree 7)., is determined by the output transfer failure rate.
Transfers of completed, failed and running invocations are
considered.

m=1-

77e=1—

MNis = max(gi)l, ¢27 .

g) Site Misconfigured for Output Data: the incident
degree 7,5 in this incident is determined as follows:
7¢k) - media‘n(wh /(/)27 e

Tos :max(wtha"' 71/}]6)

where 1); denotes the output transfer failure ratio on site ¢ at
time ¢ and k is the number of white-listed sites used by the
activity at time ¢.

h) Application Error: applications can fail due to a
variety of reasons among which: the application executable
is corrupted, dependencies are missing, or the executable is
not compatible with the execution host. The incident degree
7, in this state is measured by the task failure rate due to
application errors. Completed, failed, and running tasks are
considered.

i) Site Misconfigured for Application: The incident de-
gree 7,5 in this state is measured as follows:

, ) —median(ag, ag, . .., ax)

Nas = max(a, g, ...
where «; denotes the task failure rate due to application errors
on site ¢ and k is the number of white-listed sites used by the
activity at time ¢.

V. INCIDENT LEVELS AND ACTIONS

Incident degrees 7); are quantified in discrete incident levels
so that different sets of actions can be used to address different
levels of the incident. The threshold number and values are
determined from observed distributions of 7;. The number
m; of incident levels associated to incident i is set as the
number of modes in the distribution of ;. Thresholds 7; ; are
determined from mode clustering.

A. Training Dataset

We collected traces from the Virtual Imaging Platform [3]]
gateway between April and August 2011. Applications de-
ployed in this platform are described as workflows executed
using the MOTEUR workflow engine [30]. Resource provi-
sioning and task scheduling is provided by DIRAC [31]] using
so-called “pilot jobs”. Resources are provisioned online with
no advance reservations. Tasks are executed on the biomed
virtual organization (VO) of the European Grid Infrastructure
(EGIf] which has access to some 150 computing sites world-
wide and to 120 storage sites providing approximately 4 PB
of disk.

This data set contains 1,082 executions of 36 different
workflows executed by 26 users. Workflow executions contain
1, 838 activity instances, corresponding to 92, 309 invocations
and 123,025 tasks (including resubmissions).

Figure [ shows the cumulative amount of running activities
along this period. It shows that the workload is quite uniformly
distributed although a slight increase is observed in June.

Zhttp://www.egi.eu
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Fig. 4. Cumulative amount of running activities from April to August 2011.

B. Incident Levels and Actions

Incident degrees were computed after each event found
in this data set (total of 641,297 events). Fig. [3 displays
histograms of computed incident degrees. For readability pur-
poses, only 7; # 0 values are represented. Histograms are
clearly multi-modal, which confirms that incident degrees are
quantified. Level numbers and threshold values 7 are set from
visual mode detection in these histograms and reported on
Table [I| with associated actions.

Incidents at level 1 are considered painless for the execution
and they do not trigger any action. Other levels can lead
to radical (completely stop the activity or blacklist a site)
or intermediate actions (task replication, file replication, or
provisioning of extra resources).

C. Association Rules

Association rules are computed based on the frequency of
occurrences of two incident levels. The confidence pu Y of a
rule x,,, = x; ; measures the probability that an 1n01dent level
x,; ; happens when z,,, occurs. Table shows rule samples
extracted from the training data-set and ordered by decreasing
confidence. The set of rules leading to activity blocked (x1 2)
and low efficiency (x2 2) incidents shows that they are partially
dependent of other “cause” incidents, which is considered by
the self-healing process.

At the bottom of the table we find rules with null confidence.
These are consistent with common-sense interpretation of the
incident dependencies (e.g. no site-specific issue when input
data is unavailable).

VI. EXPERIMENTS

The healing process was implemented in the Virtual Imag-
ing Platform (see description in section and deployed
in production. The experiments presented hereafter evaluate
the ability of the healing process to (i) improve workflow
makespan in case of recoverable incidents and (ii) quickly
identify and report critical issues.

A. Implementation

The FuSM and healing process were implemented in the
MOTEUR workflow engine. The timeout value in the healing
process was computed dynamically as the median of the task
inter-completion delays in the current execution.
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Fig. 5. Histograms of incident degrees sampled in bins of 5%.

Task replication is performed by resubmitting running tasks
to DIRAC. To avoid concurrency issues in the writing of
output files, a simple mechanism based on file renaming was
implemented. To limit infrastructure overload, running tasks
are replicated up to 5 times.

Input file unavailability is distinguished from non-existent
file using ad-hoc parsing of standard error files. File replication
is implemented differently depending on the incident. In case
of input data unavailability, a file is replicated to a storage
resource randomly selected in the biomed VO. The maximal
allowed number of file replicas is set to 5. In case a site is
misconfigured, replication to the site local storage resource
is first attempted. This aims at circumventing inter-domain
connectivity issues. If there is no local storage available or the
replication process fails, then a second attempt is performed
to a storage resource successfully accessed by other tasks
executed on the same site.

Problematic sites are only temporarily blacklisted during
a time interval set from exponential back-off. The site is



Incident Number of incident Level 1 Level 2 Level 3
levels (m;) Ti,1 actions | T2 actions Ti,3 actions
x7: activity blocked 2 0 1] 0.6 replicate running tasks
x2: low efficiency 2 0 0 0.6 replicate input files
replicate running tasks
x3: input data unavailable 3 0 1] 0.2 replicate input files 0.8 stop activity
x4: input data does not exist 2 0 0 0.8 stop activity
x5: site misconfigured for input data 3 0 0 0.3 replicate files on sites 0.65  blacklist site
reachable from problematic site
zg: output data unavailable 2 0 0 0.8 stop activity
x7: site misconfigured for output data 2 0 0 0.1 blacklist site
xg: application error 2 0 [} 0.5 stop activity
xg: site misconfigured for application 2 0 0 0.1 blacklist site
TABLE II
INCIDENT LEVELS AND ACTIONS.
Association rule p? . ..
P —— 53500 properly and produce the expected results. Five repetitions
5,2 2,2 . ..
B 0.3529 were performed for each workflow activity.
5,3 = T1,2 0.3333 Experiment 2 aims at testing that unrecoverable errors are
i;; z if; 8'38‘;’2 quickly identified and the execution is stopped. Unrecoverable
T79 = Too 0.2941 errors were intentionally injected in 3 different runs: in run
52 = T1,2 0.2608 non-existent inputs, non-existent file paths were used
;9*2 z ;1*2 8‘%22 for all the invocations; in application—error, all the
2,2 1,2 . . . .
o o file paths existed but input files were corrupted; and in
3,2 = T22 0.1276 non-existent output, input files were correct but the
27’2 z §3’3 833(8) application did not produce the expected results.
3,3 9,2 . . .
T79 = T30 0.0625 MOTEUR was configured to resubmit failed tasks up to 5
times in all runs of both experiments. For each experiment, a
zzg z ;ii 8‘8888 workflow execution using our method (Self-Healing) was
Ta2 = T50 0.0000 compared to a control execution (No-Healing). Executions
T42 = T53 0.0000 were launched in production conditions, i.e., without any
i:i z izz 8’8888 control of the number of available resources and reliability.
T53 = Ta3 0.0000 Self-Healing and No-Healing were both launched
5,3 = T4,2 0.0000 simultaneously to ensure similar grid conditions. Runs were
performed along a time period of one week, therefore under
TABLE IIT

CONFIDENCE OF RULES BETWEEN INCIDENT LEVELS.

first blacklisted for 1 minute only and then put back on the
white list. In case it is detected misconfigured again, then the
blacklist duration is increased to 2 minutes, then to 4 minutes,
16 minutes, etc.

B. Experiment conditions

Two workflow activities are considered. FIELD-II/pasa
consists of 122 invocations of an ultrasonic simulator on an
echocardiography 2D data set. It is a data-intensive activity
where invocations use from a few seconds to some 15 min-
utes of CPU time; it transfers 208 MB of input data and
outputs about 40 KB of data. Mean-Shift/hs3 has 250
CPU-intensive invocations of an image filtering application.
Invocation CPU time ranges from a few minutes up to one
hour; input data size is 182 MB and output is less than 1 KB.
Files were replicated on two storage sites for both activities.

Two experiments were performed on both workflow ac-
tivities. Experiment 1 aims at testing that recoverable errors
are detected and handled. It is a correct execution where all
the input files exist and the application is supposed to run

different grid conditions. The DIRAC scheduler was config-
ured to equally distribute resources among executions. We
used DIRAC v5r12p9 and MOTEUR 0.9.19.

C. Results and Discussion

Experiment 1: Fig. [] shows the makespan of
FIELD-II/pasa and Mean-Shift/hs3 for the b5
repetitions. The makespan was considerably reduced in all
repetitions of both activities. Speed-up values yielded by
Self-Healing ranged from 2.6 to 4 for FIELD-II/pasa
and from 1.3 to 2.6 for Mean-Shift/hs3.

Table [[V] shows occurrences of incident levels and as-
sociated actions. All recoverable incidents were observed,
except 7 2. For FIELD-II/pasa, z2,2 was the predominant
incident due to the data-intensive nature of the application. No
blocked activity was detected due to important task replication
triggered by low efficiency. For Mean-Shift/hs3, low
efficiency and blocked activity almost equally appeared. The
total number of replicated tasks for all repetitions was 1,128
for FIELD-II/pasa (i.e. 1.8 task replication per invocation
in average) and 644 for Mean-Shift/hs3 (i.e. 0.5 task
replication per invocation in average).

Experiment 2: Fig. []] shows the makespan of
FIELD-II/pasa and Mean-Shift/hs3 for the 3 runs
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Fig. 6. Experiment 1: execution makespan for FIELD-II/pasa (top) and
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Activity Incident level | Occurrence | Actions
FIELD-II/pasa 2,2 262 | replicate running tasks
replicate input files
9,2 12 | blacklist site
Mean-Shift/hs3 1,2 111 replicate running tasks
2,2 83 | replicate running tasks
replicate input files
5,2 16 | replicate files on sites
5,3 6 | blacklist site
9,2 8 | blacklist site
TABLE IV

EXPERIMENT 1: OCCURRENCES OF INCIDENT LEVELS (CUMULATIVE
VALUES FOR 5 REPETITIONS).

where unrecoverable errors were introduced. No-Healing
was manually stopped after 7 hours to avoid flooding the
infrastructure with faulty tasks. In all cases, Self-Healing
was able to detect the issue and stop the execution far before
No-Healing. It confirms that the healing process is indeed
able to identify unrecoverable errors and stop the execution
accordingly. As shown on Table [V] the number of submitted
fault tasks was significantly reduced, which has benefits both
to the infrastructure and to the gateway itself.

Number of tasks

Run Self-Healing | No-Healing
application-error FIELD-Il/pasa 196 732
Mean-Shift/hs3 249 1500

non-existent input FIELD-Il/pasa 293 732
Mean-Shift/hs3 417 1500

non-existent output | FIELD-II/pasa 287 732
Mean-Shift/hs3 364 1500

TABLE V
NUMBER OF SUBMITTED FAULTY TASKS.

In average, the experiments used more than 400 nodes from
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Fig. 7. Experiment 2: makespan of FIELD-II/pasa and
Mean-Shift/hs3 for 3 different runs.

36 distinct sites of the production system.

VII. CONCLUSION

We presented a simple, yet practical method for autonomous
detection and handling of operational incidents in workflow
activities. No strong assumption is made on the task duration
or resource characteristics and incident degrees are measured
with metrics that can be computed online. We made the
hypothesis that incident degrees were quantified into distinct
levels, which we verified using extensive historical informa-
tion. Incident levels are associated (offline) to action sets
ranging from light execution tuning (file/task replication) to
radical site blacklisting or activity interruption. Action sets
are selected based on the degree of their associated incident
level and on confidence of association rules determined from
execution history.

This strategy was implemented in the MOTEUR workflow
engine and deployed on the European Grid Infrastructure with
the DIRAC resource manager. Results show that the proposed
method speeds up execution up to a factor of 4 and properly
detects unrecoverable errors.

The approach can be extended in several ways. First, other
incidents could be added, provided that they can be quantified
online by a metric ranging from 0 to 1. Possible candidates
are infrastructure service downtimes (e.g. file catalog, storage
servers, computing sites) detected by external active moni-
toring systems such as Nagios [16]. Action sets could also
be extended, for instance with actions related to resource
provisioning.

Besides, mode detection used for incident quantification
could be improved by (i) automated detection (e.g. with Mean-
Shift [32]]) and (ii) periodical update from execution history.
Using the history of actions performed to adjust incident de-
gree could also be envisaged. For instance, incidents for which
several actions already have been taken could be considered
more critical.

Finally, other gateway components could be targeted with
the same approach. Our future work addresses complete
workflow executions, taking actions such as pausing workflow
executions, detected blocked workflows beyond activities, or
allocating resources to users and executions.
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